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 

Abstract—Nonnegative Matrix Factorization (NMF), which 

aims at obtaining the nonnegative low-dimensional representation 

of data, has been received widely attentions. To obtain more 

effective nonnegative discriminant bases from the original NMF, a 

novel method called Nonnegative Discriminant Matrix 

Factorization (NDMF) is proposed for image classification in this 

paper. NDMF integrates the nonnegative constraint, orthogonality 

and discriminant information in the objective function. NDMF 

considers the incoherent information of both factors in standard 

NMF and is proposed to enhance the discriminant ability of the 

learned base matrix. NDMF projects the low-dimensional 

representation of the subspace of the base matrix to regularize the 

NMF for discriminant subspace learning. Based on the Euclidean 

distance metric and the generalized Kullback-Leibler (KL) 

divergence, two kinds of iterative algorithms are presented to solve 

the optimization problem. The between- and within-class scatter 

matrices are divided into positive and negative parts for the update 

rules and the proofs of the convergence are also presented. 

Extensive experimental results demonstrate the effectiveness of the 

proposed method in comparison to the state-of-the-art 

discriminant NMF algorithms.  

 
Index Terms—Nonnegative matrix factorization, maximum 

margin criterion, discriminative ability, face recognition. 

 

I. INTRODUCTION 

N many data analysis tasks, a fundamental problem is to find a 

suitable low-representation of the data [1], [2], [3], [4]. A 

useful representation should discover the latent information 
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embedded in the data set for further processing in the 

dimensionality reduction [5]. The most popular dimension 

reduction methods include principal component analysis (PCA) 

[6] and linear discriminant analysis (LDA) [7]. In recent years, 

matrix factorization methods have become popular and a 

number of matrix factorization methods have been proposed. 

Usually, matrix factorization techniques find two or more lower 

dimensional matrices whose product provides a good 

approximation to the original input data matrix [8]. For example, 

vector quantization (VQ) [9], singular value decomposition 

(SVD) [10], and nonnegative matrix factorization (NMF) [11] 

are some of the most popular matrix factorization techniques. 

VQ maps data vectors into binary vectors by exploiting a 

minimum distortion rule. SVD represents the original matrix in 

a low-rank approximation which is optimal in the sense of 

reconstruction error. Different from PCA, VQ and SVD, NMF 

aims to find two nonnegative matrices whose product is able to 

best approximate the original data matrix. 

 Previous researches [1], [11] indicate that the non-negativity 

constraint leads to a parts-based representation of the object. 

Some studies have shown that there are psychological and 

physiological evidences for parts-based representation in the 

human brain [12], [13], [14]. NMF only allows additive, not 

subtractive combination of the original data, and thus it is 

naturally favor to sparse, parts-based representation which is 

more robust than non-sparse, global representations [15]. 

In the past decade, a number of works related to NMF have 

been proposed. In [16], Li et al. imposed extra constraints to 

solve the localized and part-based decomposition by extending 

the standard NMF. Hazan et al. introduced an algorithm for a 

nonnegative 3D tensor factorization for the purpose of 

establishing local parts feature decomposition from an object 

class of images [17]. This algorithm uses nonnegative tensor 

factorization for handling the data encoded as high-order 

tensors. To encode discriminant information into NMF, Wang 

et al. proposed the Fisher-NMF (FNMF) [18], and Zafeiriou et 

al. extended it by adding an extra term of scatter difference to 

the objective function of NMF to obtain the discriminant 

subspace [19], [20]. The authors proposed a discriminative 

convex NMF for the classification of human brain tumours [21]. 

In addition, graph regularized NMF (GNMF) [8], constrained 

NMF (CNMF) [22], and projective nonnegative graph 

embedding (PNGE) [23], are widely used in nonnegative data 

factorization for image clustering and recognition, and the 

variations of the NMF-based methods can also be used in 

biomedical applications [24], [25]. In [26], the authors 

proposed a flexible nonnegative patch alignment framework for 

NMF related dimension reduction methods. Guan et al. [27] 

proposed an efficient NeNMF for optimizing NMF and its 
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extensions. 

According to the Ref [28], NMF with additional constraints 

can be categorized into four classes, including sparse NMF, 

orthogonal NMF, manifold NMF and discriminant NMF. In this 

paper, we focus on the discriminant ability of the NMF-based 

methods. It is clear that integrating the discriminant information 

into NMF will benefit for improving the classification 

performance of the NMF-based methods [18], [19], [20]. 

However, the methods in [18], [19], [20] only used the 

discriminant information of the coefficient matrix V  in NMF 

for facial expression recognition and thus the discriminant 

ability of these methods will be limited. Moreover, in the lower 

dimensional space, since the value of k  (see (1)) is much 

smaller than M  and N , the discriminant ability may be 

weaken when DNMF is used for general image recognition 

problem with large number of classes. The regularized terms in 

[18], [19], [20] implicitly depend on the representation 

coefficients matrix V , the derived base matrix U will 

emphasize more distinct localized properties instead of 

discrimination and the performance of DNMF will be finally 

degraded.  

A suitable criterion used as the regularized term of the 

NMF-based methods should consider both the discriminative 

and reconstructive properties. Since the ratio form of LDA [7], 

[29] and its variations [30] [31] is difficult to solve when they 

are integrated to the NMF model in small sample size problem 

and the base/projection of the LDA is not orthogonal, it is not 

suitable to use them as the regularized term. However, 

maximum margin criterion (MMC) [32], [33], which maximizes 

the margin between classes and minimizes the within-class 

scatter, is a good choice to regularize the factors of NMF for 

enhancing the discriminant ability since the projections of 

MMC are orthogonal and contain strong discriminant 

information. Therefore, in order to effectively enhance the 

discriminant ability of NMF, in this paper, we propose a novel 

method, called Nonnegative Discriminant Matrix Factorization 

(NDMF) for image classification. 

The contributions or the excellent properties of NDMF can 

be highlighted as followings: 

1) Two iterative algorithms, which are proven to be 

convergent based on the Euclidean distance metric and the 

generalized Kullback-Leibler (KL) divergence, are proposed 

respectively. In the proposed methods, we divide the 

between-class and within-class scatter matrices into positive 

and negative parts, which is helpful for the proofs of the 

convergence. 

2) Different from the previous discriminant NMF  [18], [19], 

[20] in which the regularized terms work implicitly depending 

on the representation coefficient matrix V , NDMF combines 

the low-dimensional representation of the data with the 

subspace of U  to regularize the NMF for discriminant 

subspace learning. That is, the base matrix  U  is directly 

related to the coefficient matrix. 

3) The discriminant and localized properties as well as the 

orthogonality of the base matrix are fully taken into 

consideration and incorporated in one model. That is, NDMF 

combines nonnegative constraint, orthogonality and 

discriminant information in the objective function, in which 

both U  and V are combined together to construct the 

regularized term. 

The rest of the paper is organized as follows: Section II 

briefly reviews NMF and its related works. The detailed 

algorithms of NDMF and theoretical proof of the convergence 

of the algorithms in two formulations are given in Section III 

and Section IV, respectively. Extensive experimental results are 

presented in Section V. Section VI concludes the paper. 

II. BRIEF REVIEWS OF NONNEGATIVE MATRIX FACTORIZATION 

(NMF) AND ITS RELATED WORKS  

In order to the ease of reading, in this section, we briefly 

review some related works including NMF, LNMF, DNMF and 

MMC. 

A. Nonnegative Matrix Factorization 

NMF is different from VQ and SVD as it enforces the 

constraint that the elements of the factor matrices must be 

nonnegative. 

NMF decomposes a matrix M NX R   into two nonnegative 

matrixes 
1( , , ) M K

KU u u R    and 
1( , , ) K N

NV v v R   . 

In [11], Lee et al. proposed two objective functions: the 

Euclidean distance and the KL divergence. The Euclidean 

distance based objective function is defined as: 

                               
2

F
O X UV                                   (1) 

where 
F

  denotes the Frobenius norm of a matrix. It means 

that each data point 
ix  is approximated by a linear combination 

of the columns of U , weighted by the components in V . 

Lee and Seung proposed the following iterative update rules 

to obtain a local minimum of (1): 

1
( )

( )

T

jkt t

jk jk T

jk
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U UV
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B. Local Nonnegative Matrix Factorization 

The additive parts learned by NMF are not necessarily 

localized, thus Li et al. [16] proposed a local nonnegative matrix 

factorization (LNMF) algorithm for learning spatially localized, 

parts-based representation of visual patterns.  

The model of LNMF is defined as follows: 

,

( , )LNMF ij ii

i j i

D D X UV a b                          (3) 

where ( , )D X UV  is the KL divergence between X  and UV , 

[ ] T

ijA a U U   and [ ] T

ijB b VV  ，   ,   are positive 

constants. According to the authors, minimizing 
,

ij

i j

a  

suppresses over decomposition of the bases matrix U , while 

maximizing ii

i

b  encourages retaining components with 

important information.  

C. Discriminant Nonnegative Matrix Factorization 

Motivated by LNMF, the authors in [19] incorporated 

discriminant constraints inside the NMF decomposition. The 

cost function of DNMF is  

( , ) [ ] [ ]DNMF w bD D X UV tr S tr S                          (4) 
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where  ,   are positive constants. 
wS  and 

bS  are 

within-class matrix and between-class matrix of  the coefficient 

matrix V , respectively. 
wS  and 

bS  are defined as follows: 

     ( ) ( ) ( ) ( )

1 1

( )( )
inC

r r r r T

w

r

S  


   
 

                             (5) 

( ) ( )

1

( )( )
C

r r T

b r

r

S n    


                               (6) 

C  is the number of class, and 
in  is the number of samples in 

the ith  class. The j th column of the database X  is the  th 

image of the r th class. Thus, 
1

1

r

ii
j n 




  . The vector 

jv  

that corresponds to the j th column of the matrix V , is the 

coefficient vector for the  th facial image of the r th class and 

will be denoted as ( ) ( ) ( )

,1 ,[ ]r r r T

K     . The mean vector of the 

vectors ( )r

  for the class r  is denoted as ( ) ( ) ( )

1[ ]r r r T

K    

and the mean of all classes as 
1[ ]T

K   .  

The regularized terms in [18], [19], [20] implicitly depend on 

the representation coefficients matrix V , the derived base 

matrix U  will emphasize more on the reconstruction property 

instead of discrimination. Thus, the performance of the related 

works about DNMF will be degraded in the general recognition 

problems. 

D. Maximum Margin Criterion 

To enhance the discriminant information and avoid the small 

sample size problem in LDA, the authors in [33] proposed new 

feature extractors based on maximum margin criterion (MMC). 

The model of MMC is defined as below: 

1

max ( )
d

T

k b w k

k

w S S w


                             (7) 

s.t. 1 0,T

k kw w    1, , .k d  

where  
bS  and  

wS  are between- and within-class scatter 

matrices in classical LDA. Therefore, the projections of MMC 

have strong discriminant ability. In addition, similar to PCA, the 

projections of MMC also have strong reconstructive ability 

since the projections are also orthogonal. This property can be 

integrated in the NMF model for enhancing the discriminant and 

reconstructive ability in a certain sense, which will be used as 

one of the motivations for the proposed method. 

III. NONNEGATIVE DISCRIMINANT MATRIX FACTORIZATION 

In this section, we introduce the proposed method, i.e. 

Nonnegative Discriminant Matrix Factorization (NDMF) for 

image classification. We first give the details of the motivation 

of the proposed method, and then present the objective function 

and the update rules. At last, we give the update rules of the 

proposed object function and analyze the connection of our 

method with gradient method. 

A. The Motivations of the Proposed Method 

In NMF methods, the original input data is divided into the 

product of two nonnegative matrices. Thus, both of the two 

nonnegative matrices contain the discriminative information of 

the original data. While, the related discriminative NMF [18], 

[19], [20] methods are only introduce the discriminative 

information of the coefficient matrix. That is, the related works 

of DNMF only introduce the within- and between-class scatter 

values with respect to the coefficient matrix V . The regularized 

terms in DNMF works only implicitly depend on the 

representation coefficients matrix, the derived base matrix 

emphasizes more on the reconstruction property instead of 

discrimination. Thus, the performance of the related works 

about DNMF would be degraded in the general recognition 

problems and the discriminant information exploited by DNMF 

is limited. To compensate for these deficiencies of DNMF 

works, we propose a novel method, which is named NDMF. Our 

idea is to effectively introduce discrimination information of the 

base matrix and the coefficient matrix into NMF for obtaining 

better classification performance, and at the same time to give 

the distinct localized parts for better representing the original 

data. Different from [18], [19], [20], the proposed method 

requires the orthogonality of the base matrix U to enhance the 

localized parts representation of the original data, and at the 

same time, explores the nonnegative discriminant subspace U , 

on which the data can obtain better separability. NDMF 

combines the base matrix and the coefficient matrix effectively 

to better use the discriminative information. Besides, NDMF 

also introduces the orthogonal regularization term of the base 

matrix to obtain better parts-based representation. The main 

advantages of NDMF can be concluded as follows: 

Firstly, we define the within-class scatter matrix and 

between-class scatter matrix of the coefficient matrix V  and 

combine them with the subspace (i.e. the base matrix) U  

together to enhance discriminant ability of NDMF. Secondly, 

since NMF cannot guarantee to derive the orthogonal base 

matrix, we directly introduce the orthogonality of the base 

matrix to enhance the distinct localized parts representation 

ability of NMF. Thirdly, according to the MMC [32], [33], we 

also tend to maximize the between-class scatter and minimize 

the within-class scatter of the low-dimensional representation 

on the subspace U so as to increase the discriminant ability 

when U is used for feature extraction and classification. This 

indicates that when the discriminant coefficient matrix V , 

which is usually viewed as the low-dimensional representation 

of the original data, combining with the base matrix U , can 

obtain stronger discriminant ability. This bridges the gap of the 

independency between the low-dimensional representation 

coefficient and the discriminant subspace used for classification. 

Thus, the relative independency of the DNMF on the 

coefficients is broken through and the discriminant ability of the 

base U  can be greatly improved. 

Compared with the existing discriminant NMF works, the 

proposed method has stronger classification performance and 

more flexible and generalization ability for image classification. 

When ignoring the orthogonal term of the base matrix, NDMF 

will be degraded into DNMF. That is, DNMF can be seen as a 

special case of NDMF. NDMF further extends the existing 

discriminant NMF methods. 
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B.  Objective Function 

To improve the performance of NMF, the common strategy is 

to regularize the nonnegative parts in the decomposition. The 

regularized optimization model of NMF can be stated as 

follows: 

                  
0, 0

min ( , ) ( , )
U V

D X UV U V
 

                         (8) 

where 0   is a tradeoff parameter. The first term of (8) 

represents traditional NMF, and the last term of (8) denotes the 

regularized term either on U  or V , or both U  and V . The 

related works about DNMF [18], [19], [20] introduce the 

between- and within-class scatter matrices of the coefficient 

matrix V  into NMF as the regularized term. From (5) and (6), 

we can find that DNMF [18], [19], [20] only introduces the 

discriminant information of the coefficient matrix V  into NMF 

(i.e. the regularized term is only related to V ). 

From the motivations presented in the previous section, it is 

clear that we not only require U  to be orthogonal，  i.e. 
2

TU U I is appended to the proposed model, but also define a 

new regularized term, which includes the following two items: 

( ) ( ) ( ) ( )

1 1

( )( )
inC

T r r r r T

w

r

US U U U U U 


   
 

                    (9) 

( ) ( )

1

( )( )
C

T r r T

b r

r

US U n U U U U   


                       (10) 

From (9) and (10), our method introduces the discriminant 

information in a completely different way from [18], [19], [20]. 

Our method not only introduces the orthogonality of the base 

matrix U  but also combines the discriminant information of 

matrices V  and U . 

Using the Frobenius norm as the cost function, NDMF aims 

to minimize the following objective function 
22

1 2

22

1 2

( ( ) ( ))

( ( ) )

T T T

w b

T T

w b

O X UV U U I tr US U tr US U

X UV U U I tr U S S U

 

 

     

     

(11) 

s.t. 0,U   0V   

where 
1  and 

2  are regularization parameters, I  is the 

identity matrix. 
wS  and 

bS  are within-class matrix and 

between-class matrix of  the coefficient matrix V  which are the 

same as (5) and (6), respectively. The objective function (11) 

not only introduces the orthogonality of NMF, but also 

improves the discriminant ability by combining the discriminant 

information of matrices V  and U . 

In order to satisfy the non-negativity constrains of NMF, we 

rewrite (11) as: 
22

1

2 | | | |( (( ) ( )) )

T

T

w w b b

O X UV U U I

tr U S S S S U



    

   

   
            (12) 

wS   and 
bS   denote the nonnegative parts of matrices wS  and 

bS . | |wS 
 and | |bS 

 are the element wise absolute of the negative 

parts of matrices 
wS  and 

bS .  

It can be found that DNMF [18], [19], [20] introduces the 

discriminant information of the coefficient matrix V  into NMF 

to enhance the discriminant ability of NMF. However, DNMF 

only regularizes the coefficient matrix V . Thus, the 

discriminant information exploited by DNMF is limited. 

Different from [18], [19], [20], the proposed method requires 

the orthogonality of the base matrix U to enhance the localized 

parts representation of the original data, and at the same time, 

explores the nonnegative discriminant subspace U , on which 

the data can obtain better separability. 

The above optimization problem introduces the orthogonality 

of the base matrix U , which can enhance the localized parts 

representation ability of the original data. The key novelty of 

our proposed method is that the discriminant information of the 

coefficient matrix V is combined with the base matrix U  as the 

regularized term to measure the discriminant information. Thus, 

we not only take into account the separability of the 

low-dimensional representation V  but also the discriminant 

ability of subspace U . 

C.  Update Rules 

The objective function in (12) is not convex in both variables 

U  and V . It is hard to find the global minima for O . In the 

following, we describe an iterative updating algorithm to obtain 

the local optima solution of O  following the similar way as [8]. 

Note that ( ) ( )tr AB tr BA , the objective function O  can be 

rewritten as follows: 

 
2

1

2 | | | |

2

1 2 | | | |

( )( )

( (( ) ( )) )

( ) 2 ( ) ( )

( ) ( (( ) ( )) )

T T

T

w w b b

T T T T T

T T

w w b b

O tr X UV X UV U U I

tr U S S S S U

tr XX tr XV U tr UVV U

tr U U I tr U S S S S U





 

   

   

    

   

  

     

 

Let 
ij  and 

ij  be the Lagrangian multipliers for constraints 

0iju   and 0ijv  , respectively. We define matrix [ ]ij  , 

[ ]ij  , then the Langrange function 

2

1

2 | | | |

( ) 2 ( ) ( ) ( )

( (( ) ( )) ) ( ) ( )

T T T T T T

T T T

w w b b

L tr XX tr XV U tr UVV U tr U U I

tr U S S S S U tr U tr V



    

    

       
 

The partial derivatives of L  with respect to U  and V  are:  

1 1

2 | | | |

2 2 4 4

2 (( ) ( ))

T T T

w w b b

L
UVV XV UU U U

U

U S S S S

 

    


   



    

          (13) 

2 | | | |

2 2

2 ( (( ) ( )) )

T T

T

v w w b b

L
U UV U X

V

tr U S S S S U    


  



    

  (14) 

Using the Karush-Kuhn-Tucker condition 0ij iju   and 

0ij ijv  , we obtain the following equations for iju  and ijv : 

1 1

2 | | | |

( ) ( ) 2 ( ) 2 ( )

( (( ) ( ))) 0

T T T

ij ij ij ij ij ij ij ij

w w b b ij ij

XV u UVV u UU U u U u

U S S S S u

 

    

  

    
 (15) 

2 | | | |

( ) ( )

( ( (( ) ( )) )) 0

T T

ij ij ij ij

T

v w w b b ij ij

U X v U UV v

tr U S S S S U v    

 

    
             (16) 

Equations (15) and (16) lead to the following update rules: 
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1 2 | |

1 2 | |

( 2 ( ))

( 2 ( ))

T

w b ij

ij ij T T

w b ij

XV U U S S
u u

UVV UU U U S S

 

 

 

 

  


  
                (17)                       

2 | |

2 | |

( ( ( ) ))

( ( ( ) ))

T T

v w b ij

ij ij T T

v w b ij

U X tr U S S U
v v

U UV tr U S S U





 

 

  


  
                  (18) 

We have the following theorem regarding the iterative update 

rules (17) and (18). We will show that the update rules of U  

and V  in (17) and (18) will converge and the final solution will 

be a local optimum. Appendix A gives the detailed proof of 

Theorem 1. 

Theorem 1. The objective function O  in (1) is nonincreasing 

under the update rules in (17) and (18).  

D. Connection with Gradient Method 

In the proposed method, i.e. NDMF, the objective function 

(12) can be minimized by gradient descent algorithm [36]. 

Using gradient descent method, the additive update rules for (12) 

are: 

ij ij ij

ij

O
u u

p



 


, 

ij ij ij

ij

O
v v

v



 


. 

ij  and 
ij  are the parameters to control the step size of gradient 

descent. Let 1 2 | |/ 2( 2 ( ))T T

ij ij w b iju UVV UU U U S S         , 

 we have  

1 2 | |

1 1 2 | | | |

1 2 | |

1 2 | |

1 2

2( 2 ( ))

( 2 2 (( ) ( )))

( 2 ( ))

( 2 ( ))

( 2

ij

ij ij ij T T

ij ijw b ij

T T T

ij w w b b ij

ij T T

w b ij

T

w b ij

ij T T

uO O
u u

u uUVV UU U U S S

u UVV XV UU U U U S S S S
u

UVV UU U U S S

XV U U S S
u

UVV UU U U


 

  

 

 

 

 

   

 

 

 
  

   

      
 

  

  


  | |( ))w b ijS S 

 

Similarly, let 2 | |/ 2( ( ( ) ))T T

ij ij v w b ijv U UV tr U S S U        , 

we have  

2 | |

2 | | | |

2 | |

2 | |

2

2( ( ( ) ))

(( ) ( ) ( ( (( ) ( )) )) )

( ( ( ) ))

( ( ( ) ))

(

ij

ij ij ij T T

ij ijv w b ij

T T T

ij ij ij v w w b b ij

ij T T

v w b ij

T T

v w b ij

ij T

vO O
v v

v vU UV tr U S S U

v U UV U X tr U S S S S U
v

U UV tr U S S U

U X tr U S S U
v

U UV












 

   

 

 

 
  

   

     
 

  

  


  | |( ( ) ))T

v w b ijtr U S S U 

The multiplicative updating rules in (17) and (18) are special 

cases of gradient descent [8], [37]. 

IV. ALGORITHM MINIMIZING THE KL DIVERGENCE COST 

As described in [37], NMF can also be measured by the KL 

divergence. In this section, we also present the algorithm of 

NDMF based on the KL divergence.  

A.  The Objective Function and the Update Rules 

The objective function of NDMF based the KL divergence is 

defined as: 

1 2 | | | |

1

, ,

2 | | | |

( ) ( ) ( (( ) ( )) )

( log ( ) ) ( log ( ) )
( ) ( )

( (( ) ( )) )

T T

KL w w b b

ij ij T

ij ij ij ij ij ijT
i j i jij ij

T

w w b b

O D X UV D I U U tr U S S S S U

x I
x x UV I I U U

UV U U

tr U S S S S U

 





   

   

     

     

   

    

         (19) 

After some simplifications and elimination of pure data terms, 

we have  

1

, ,

2 | | | |

(( ) log( ) ) (( ) log( ) )

( (( ) ( )) )

T T

KL ij ij ij ij ij ij

i j i j

T

w w b b

O UV x UV U U I U U

tr U S S S S U



    

   

   

 

           (20) 

Taking the derivative with respect to U and V , we have the 

following update rules which can achieve a local minima of 

(20): 

1 2 | |

1 2 | |

/ 2 / 2 ( ( ))

2 2 ( ( ))

jb ib ik kb ik pi ip w b ijb k k p

ij ij

jb ik w b ijb k

v x u v u u u U S S
u u

v u U S S

 

 

 

 

  


  

   

 
              (21) 

2 | |

2 | |

/ ( ( ( ) ))

( ( ( ) ))

T

pi pi pk kj v w b ijp k

ij ij T

pi v w b ijp

u x u v tr U S S U
v v

u tr U S S U





 

 

  


  

 


                    

(22) 

Theorem 2. The objective function 
KLO  in (20) is 

nonincreasing under the update rules in (21) and (22). The 

objective function is invariant under these updates if and only if 

U  and V  are at a stationary point. 

  The proof of the Theorem 2 is presented in Appendix B. 

B.  Connection with Gradient Method 

The objective function of NDMF based the KL divergence 

can also be minimized by gradient descent algorithm as we have 

shown in Section III. 
Let the step size of gradient descent as follows: 

1 2 | |/ ( 2 2 ( ( )) )ij ij jb ik w b ijb k
u v u U S S         
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Then the additive update rules becomes 

1

2 | | | | 1
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( 2
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2 2 ( (
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
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. 

We can obtain the multiplicative update rules in (21) and (22). 
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V. EXPERIMENTAL RESULTS  

In this section, we systematically evaluate the proposed 

Nonnegative Discriminant Matrix Factorization (NDMF) for 

face recognition and handwritten digit recognition tasks. We 

evaluate the performance of the proposed NDMF with six 

representative algorithms including LDA [7], NMF [11], LNMF 

[16], DNMF [19], PGDNMF [20], and manifold regularized 

discriminative NMF (MD-NMF) [34]. The experiments were 

conducted on the YALE [7], ORL [38], FERET [39], and CMU 

PIE [40] databases to evaluate the effectiveness of our 

algorithms for face recognition. And the MNIST [41] database 

is used to evaluate the proposed method for handwritten digit 

recognition task. All the images of these five databases with 256 

gray levels per pixel, and the pixel values were scaled to be 

within [0, 1]. Fig. 1 shows example images of the YALE, ORL, 

FERET, PIE and MNIST databases. 

 
Fig. 1. Example images from the YALE (first row), ORL (second row), FERET 

(third row), CMU PIE (fourth row) and MNIST databases (fifth row). Each row 

shows seven images captured at different situations. 

We use the training set to learn basis/projection used for 

feature extraction and the test set is to report the accuracy of 

image classification. The NN classifier is used to calculate the 

percentage of samples in the test set that were correctly 

classified. Each experiment was conducted ten times and the 

averaged accuracy is reported. We set the maximum iterations 

number of the NMF-related methods as 200 and keep it constant 

in all the experiments. Fig. 2 presents the resulting feature basis 

components of NMF, LNMF, DNMF, and NDMF for subspace 

of dimension 100. From the basis images learned from different 

algorithms, we can find that: 1) NMF basis are less sparse than 

other algorithms; 2) LNMF can produce localized and 

parts-based components; 3) DNMF and NDMF are also can 

produce localized regions; 4) NDMF has better parts-based 

learning ability than DNMF, i.e. the learned base matrix of 

NDMF is sparser than the basis of DNMF. The main reason is 

that NDMF encodes the orthogonal property into NMF which 

can obtain stronger parts-based representation ability. The 

sparsity property of NDMF makes it potentially more robust to 

expressions and lighting changes. 

       
(a) NMF               (b) LNMF             (c) DNMF          (d) NDMF 

Fig. 2 Basis images of (a) NMF, (b) LNMF, (c) DNMF, and (d) NDMF. The 

data used are from the ORL database. 

A. Parameter Selections 

The compared methods and the related parameter selections 

of these methods are given as follows. 

· Linear discriminant analysis (LDA) [7]. The number of 

feature dimension of LDA is set as the same one reported in [7]. 

· Discriminant nonnegative matrix factorization (DNMF) 

[19]. We set the parameters as reported in [19], and the best 

results are reported by choosing the two parameters in the 

range of [0.1, 0.5].  

· Manifold regularized discriminative NMF (MD-NMF) 

[34]. There are three tradeoff parameters in MD-NMF. It is time 

consuming to select these parameters based on the grid search. 

We also set them the same as the ones in [34], i.e. 0.01  , 

0.1  , and 100  . 

· Projected gradient discriminant NMF (PGDNMF) [20]. 

The selection of parameters in PGDNMF is all the same as 

DNMF. 

· The proposed Nonnegative Discriminant Matrix 

Factorization (NDMF). In our experiments, we have tested 

values for 
1  and 

2  in the range [0, 1]. The best results have 

been obtained when choosing values in the range [0.01, 0.5]. 

We simply set 
1 0.01,   and 

2 0.1   in our experiments.  

In order to explore the variations of the performance of 

NDMF against the parameters, we randomly selected 5 images 

of each subject as training samples and the rest as test samples in 

the experiment. Fig. 3 (a) and (b) shows the variation of the 

recognition rate versus the values of lamda1 (
1 ) and lamda2 

(
2 ), respectively. For all above learning algorithms, the 

performances are evaluated on the subspace with the dimension 

of 36, 49, 64, 81 and 100. 
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    (b)                                                                      

Fig. 3 Face recognition rates versus (a) 1  with 2  fixed, and (b) 2  with 

1  fixed on the YALE, ORL, FERET and PIE database. 

B.  YALE Database 

The YALE database [7] has 165 frontal view face images of 

15 individuals. Each subject has 11 images with various facial 

expressions and lighting conditions. All images were 
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normalized to 40×40 pixel array and reshaped to a vector. We 

randomly selected 4 and 5 images from each subject to construct 

the training set, and the rest images were used for the test set.  

The average recognition rates of the test set and the standard 

deviations of each method are shown in Table I. Fig. 4 (a) and (b) 

shows the variations of the recognition rates of all the methods 

with different subspace dimension when 4 and 5 images of each 

subject were selected as training samples, and the rest images as 

test samples, respectively. For each dimension, the mean 

accuracy calculated from ten random splits is reported. As can 

be seen from Table I and Fig. 4, NDMF obtains the best 

recognition rates in the experiments, which shows the 

robustness for the variations on facial expressions and lighting 

conditions. 

C.   ORL Database 

The ORL database [38] has 40 distinct subjects, and each 

subject has 10 different images. All the subjects are in up-right, 

frontal position (with tolerance for some side movement). All 

images were taken in the same dark background and normalized 

to 40×40 pixel. We random selected different numbers (4, 5) of 

images from each subject to construct the training set, and the 

rest images were used for the test set. The performances of each 

method conducted on the ORL database are shown in Table II 

and Fig. 5. Table II lists the recognition rate of each method 

with 4 and 5 training samples. Fig. 5 (a) is the experimental 

results of all the comparison methods with 4 training samples of 

each subject. Fig. 5 (b) is the experimental results of all the 

comparison methods with 5 training samples of each subject. 

Again, NDMF performs better than the other comparison 

methods. 

D. FERET Database 

The FERET database [39] is used for evaluating face 

recognition algorithms displays diversity across gender, 

ethnicity, and age. The image sets were acquired without any 

restrictions imposed on facial expression and with at least two 

frontal images shot at different times during the same photo 

TABLE I THE PERFORMANCE (RECOGNITION RATE AND STANDARD DEVIATION) OF DIFFERENT METHODS ON THE YALE DATABASE 

Training 

samples 
LDA NMF LNMF DNMF PGDNMF MD-NMF NDMF NDMF-KL 

4 
76.22 

±6.68 

71.33 

±3.72 

74.25 

±3.13 

76.21 

±2.15 

75.66 

±4.23 

80.18 

±2.65 

84.31 

±4.09 

83.22 

±5.40 

5 
80.22 

±3.18 

77.33 

±4.12 

78.25 

±2.13 

80.21 

±3.25 

79.66 

±1.63 

82.18 

±5.25 

85.31 

±3.29 

84.82 

±4.80 

TABLE II THE PERFORMANCE (RECOGNITION RATE AND STANDARD DEVIATION) OF DIFFERENT METHODS ON THE ORL DATABASE 

Training 

samples 
LDA NMF LNMF DNMF PGDNMF MD-NMF NDMF NDMF-KL 

4 
87.08 

±3.74 

83.75 

±2.38 

84.16 

±4.16 

85.66 

±2.63 

84.64 

±3.36 

87.18 

±3.12 

90.00 

±4.18 

89.61 

±4.52 

5 
88.15 

±3.22 

84.90 

±1.87 

85.80 

±2.66 

86.77 

±5.11 

87.64 

±4.61 

90.41 

±2.88 

93.30 

±3.45 

93.25 

±1.07 
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  (a)                                                                                                                        (b) 

Fig. 4. Face recognition rates over different feature dimensions for LDA, NMF, LNMF, MD-NMF, DNMF, PGDNMF, NDMF and NDMF-KL on the YALE 

database. (a) 4 training samples; (b) 5 training samples. 
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(a)                                                                                                                            (b) 

Fig. 5. Face recognition rates over different feature dimensions for LDA, NMF, LNMF, MD-NMF, DNMF, PGDNMF, NDMF and NDMF-KL on the ORL 

database. (a) 4 training samples; (b) 5 training samples. 
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session. For the FERET face database, we used a subset made 

TABLE III THE PERFORMANCE (RECOGNITION RATE AND STANDARD DEVIATION) OF DIFFERENT METHODS ON THE FERET DATABASE 

Training 

samples 
LDA NMF LNMF DNMF PGDNMF MD-NMF NDMF NDMF-KL 

4 
64.17 

±2.05 

65.10 

±3.43 

66.47 

±3.99 

67.89 

±3.62 

67.01 

±4.57 

68.84 

±2.48 

70.11 

±3.62 

69.81 

±3.48 

5 
61.75 

±3.33 

60.45 

±2.44 

63.15 

±2.65 

66.20 

±3.89 

67.10 

±4.36 

68.70 

±2.95 

74.20 

±3.94 

73.45 

±4.10 

TABLE IV THE PERFORMANCE (RECOGNITION RATE AND STANDARD DEVIATION) OF DIFFERENT METHODS ON THE CMU PIE DATABASE 

Training 

samples 
LDA NMF LNMF DNMF PGDNMF MD-NMF NDMF NDMF-KL 

4 
84.51 

±2.87 

78.18 

±3.41 

80.11 

±6.25 

85.90 

±5.89 

86.00 

±5.21 

86.33 

±6.67 

90.11 

±3.78 

89.88 

±4.01 

5 
91.33 

±2.33 

82.16 

±3.31 

84.81 

±2.80 

91.38 

±4.67 

92.61 

±5.52 

94.26 

±5.81 

97.85 

±4.16 

96.14 

±5.22 

TABLE V THE PERFORMANCE (RECOGNITION RATE AND STANDARD DEVIATION) OF DIFFERENT METHODS ON THE MNIST DATABASE 

Training 

samples 
LDA NMF LNMF DNMF PGDNMF MD-NMF NDMF NDMF-KL 

3000 
64.22 

±2.05 

60.28 

±3.11 

61.24 

±4.15 

63.90 

±1.62 

62.10 

±4.56 

65.32 

±5.12 

69.12 

±2.38 

68.68 

±4.16 

4000 
67.34 

±1.69 

62.06 

±4.51 

64.24 

±3.52 

66.18 

±3.68 

64.20 

±2.24 

68.06 

±4.16 

72.80 

±2.22 

71.04 

±5.21 
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Fig. 6. Face recognition rates over different feature dimensions for LDA, NMF, LNMF, MD-NMF, DNMF, PGDNMF, NDMF and NDMF-KL on the FERET 

database. (a) 4 training samples; (b) 5 training samples. 
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Fig. 7. Face recognition rates over different feature dimensions for LDA, NMF, LNMF, MD-NMF, DNMF, PGDNMF, NDMF and NDMF-KL on the PIE 

database. (a) 4 training samples; (b) 5 training samples 

36 49 64 81 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Dimension

C
la

ss
ifi

ca
tio

n 
ac

cu
ra

cy

 

 

LDA

NMF

LNMF

MD-NMF

DNMF

PGNMF

NDMF

NDMF-KL

     
36 49 64 81 100

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Dimension

C
la

ss
ifi

ca
tio

n 
ac

cu
ra

cy

 

 

LDA

NMF

LNMF

MD-NMF

DNMF

PGNMF

NDMF

NDMF-KL

 
   (a)                                                                                                                      (b) 

Fig. 8. Digit recognition rates over different feature dimensions for LDA, NMF, LNMF, MD-NMF, DNMF, PGDNMF, NDMF and NDMF-KL on the MNIST 

database. (a) 3000 training samples; (b) 4000 training samples. 
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up of 1400 images from 200 individuals with each subject 

providing seven images [42]. Each image was normalized to 40

×40 pixel array. We randomly selected different numbers (4, 5) 

of images from each subject to construct the training set, and the 

rest images were used for the test set. 

Table III and Fig. 6 show the classification performance of 

the comparison methods conducted on the FERET database. Fig. 

6 (a) and (b) are the experimental results of all the comparison 

methods with 4 and 5 training samples of each subject. Table III 

lists the classification rate of each method with different training 

samples. From Table III and Fig. 6, we can see that NDMF has 

higher classification rate than other compared methods. 

E. CMU PIE Database 

The CMU PIE [40] database contains 41368 face images 

collected from 68 subjects. Each subject has 13 images of 

different poses, 43 different illumination conditions, and with 4 

different expressions. In our experiment, we selected a subset of 

5 near frontal poses (C05, C07, C09, C25, and C29) and 

illuminations indexed as 08 and 11. Therefore, each subject has 

ten images. All images were normalized to 32×32 pixel array 

and reshaped to a vector. 

Table IV lists the performance of different methods on the 

CMU PIE database. The recognition rates vs. the variations of 

the dimension are shown in Fig. 7. In the experiments, 4 and 5 

images of each individual were randomly selected and used as 

training set, and the rest of images were used as test set. The 

experimental procedures are the same as Section V -B. As can 

be seen from Table IV and Fig. 7, NDMF obtains the best 

recognition rates in all the cases when there are variations in 

pose and illumination. 

F. MNIST Database 

In this subsection, in order to verify the performance of the 

proposed methods for handwritten digit recognition task, we 

conduct experiments on the MNIST database [41]. The MNIST 

database contains 60000 training images and 10000 test images, 

both drawn from the same distribution. All these images are size 

normalized and the size of each image is 28×28. The task is to 

classify each image into one of the ten digits and the writers of 

the training set and test set are different. In our experiments, we 

randomly select 3000 and 4000 images from 60000 training 

samples to construct the training set and randomly select 5000 

test samples to construct the test set, respectively. 

Fig. 8 and Table V illustrate the classification accuracy of the 

MNIST database. From Fig. 8 and Table V, we can see that the 

proposed methods still has the best recognition rate among all 

the compared methods. 

G. Observations and Discussions 

We obtain some observations based on the experimental 

results presented in the above sections: 

(1) From experiments, we can find that DNMF and 

PGDNMF perform better than NMF and LNMF. Since DNMN 

and PGDNMF combine discriminant information in 

nonnegative factorization, both of them have higher recognition 

rates than NMF and LNMF. Our experiments also verify that 

LNMF has better classification performance than NMF, which 

is consists with [16]. 

(2) DNMF, PGDNMF and MD-NMF all encode discriminant 

information for classification. However, we can see that 

MD-NMF performs better than DNMF and PGDNMF in our 

experiments, due to the reason that MD-NMF not only 

introduces marginal information to NMF, but also introduces 

manifold structure of the data in the learning steps. 

(3) Although NDMF does not introduce manifold 

regularization, it has higher classification accuracies than 

MD-NMF. The main reason is that NDMF combines the 

discriminant information both of the nonnegative matrices V  

and U  as the regularized term. The experimental results show 

that NDMF which combines the discriminant information of the 

base matrix and the coefficient matrix could obtain good 

classification performance. This indicates that considering the 

separability of the low-dimensional representation V  and the 

discriminant ability of subspace U  does enhance the 

performance of the proposed algorithms. 

H. Convergence Study 

As proved in the previous sections, we used iterative update 

rules to obtain the local optima of NDMF no matter the cost 

measurement is the Frobenius norm or KL divergence. In this 

subsection, we experimentally show the convergent speed of our 

algorithms on the YALE database.  

We compare the convergent speed of the original NMF 

algorithm and NDMF minimizing the F-norm cost (NDMF) and 

minimizing the KL divergence cost (NDMF-KL). Fig. 9 shows 

the convergence rates of the three algorithms on the YALE 

image database. In Fig. 9, the number of iterations is shown on 

the x-axis and the value of objective function is shown on the 

y-axis. We can see that both NDMF and NDMF-KL algorithms 

converge very fast. 
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Fig. 9. Convergence of NMF, NDMF and NDMF-KL on the YALE image database. 
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VI. CONCLUSION  

In this paper, we proposed a novel method called 

Nonnegative Discriminant Matrix Factorization (NDMF) for 

image classification. Different from the NMF-based 

discriminant analysis methods, the proposed method not only 

introduces the orthogonality into NMF, but also combines the 

discriminant information of the coefficient matrix V  and the 

base matrix U  together as the regularized term to enhance the 

discriminant information. Our method maximizes the 

between-class scatter, and at the same time, minimizes the 

within-class scatter of the low-dimensional representation on 

the base matrix of NMF. We showed the NDMF method in two 

formulations and proposed update rules for both optimization 

algorithms. The classification performances of NDMF and 

NDMF-KL were tested on five standard image databases. The 

experimental results have demonstrated the effectiveness of the 

proposed method. 

APPENDIX A 

PROOF OF THEOREM 1 

To prove Theorem 1, we use an auxiliary function similar to 

the one used in Expectation-Maximization algorithm [35] and 

[22]. Definition 1 gives the definition of auxiliary function and 

Lemma 1 proves ( )F u  is nonincreasing. 

Definition 1[23]: Function ( , )G u u  is an auxiliary function for 

( )F u  if the conditions ( , ) ( ), ( , ) ( )G u u u G u u F u    are 

satisfied. 

Lemma 1[22]: If G  is an auxiliary function of F , then F  is 

nonincreasing under the update 

             ( 1) ( )arg min ( , )t t

u

u G u u                           (23) 

For any element 
abu  in U , let 

abuF  denote the part of O  

relevant to 
abu . We prove that 

abuF  is nonincreasing under the 

update step of (17) by defining an auxiliary function. Lemma 2 

defines an auxiliary function of 
abuF . 

Lemma 2: Function 

2 (3) 3 41

( , ) ( ) ( )( )

( )1 1
( )( ) ( )( ) ( )

2 3!

ab ab

ab ab

t t t t

ab u ab u ab ab

t t t t tab

u ab ab u ab ab abt

ab

G u u F u F u u u

U
F u u u F u u u u u

u



   

     

         (24) 

is an auxiliary function for 
abuF , which is the part of O  that is 

only relevant to 
abu . 

Proof: ( , ) ( )
abuG u u F u  is obvious, so we only need to show 

that ( , ) ( )
ab

t

ab uG u u F u . For doing this, we compare 

( , )t

abG u u  in (24) with the Taylor series expansion of ( )
abuF u : 

2

(3) 3 (4) 4

1
( ) ( ) ( )( ) ( )( )

2

1 1
( )( ) ( )( )

3! 4!

ab ab ab ab

ab ab

t t t t t

u u ab u ab ab u ab ab

t t t t

u ab ab u ab ab

F u F u F u u u F u u u

F u u u F u u u

     

   

              

(25) 

where 
abuF  , (3)

abuF  and (4)

abuF   are the second, third and fourth 

order derivative with respect to U , respectively. It is easy to 

check that 

1 1

2 | | | |

(2 2 4 4

2 (( ) ( )))

ab

T T T

u

ab

w w b b ab

O
F UVV XV UU U U

U

U S S S S

 

    

 
      

 

   

, 

1 1 2 | | | |(2 12 4 2 (( ) ( )) )
ab

T T T

u w w b b bbF VV U U I S S S S               

(3)

124
abuF U  

(4)

124
abuF                                  (26) 

Putting (26) into (25) and comparing with (24), we can see that, 

to show ( , ) ( )
ab

t

ab uG u u F u , it is equivalent to prove 

(4)1( ) 1
( )

4! ab

tab

u abt

ab

U
F u

u


                                (27) 

To prove the above inequality, we have 

1 1( ) t

ab abU u                                      (28) 

Thus, (27) holds and ( , ) ( )
ab

t

ab uG u u F u .                                        □ 

Let 
abvF  denotes the part of O  relevant to 

abv . Lemma 3 

defines an auxiliary function regarding 
abvF  which proves that 

abvF is nonincreasing under the update step of (18). 

Lemma 3: Function 

2

2 | | | | 2

( , ) ( ) ( )( )

( ( ( ) ) )
( )

ab ab

t t t t

ab v ab v ab ab

T T

v w w b b ab t

abt

ab

G v v F v F v v v

U UV tr U S S S S U V
v v

v

    

  

    
 

(29) 

is an auxiliary function for 
abvF , which is the part of O  

that is only relevant to 
abv . 

Proof: ( , ) ( )
abvG v v F v  is obvious, so we only need to show 

that ( , ) ( )
ab

t

ab vG v v F v  by comparing ( , )t

abG v v  in (29) with 

the Taylor series expansion of ( )
abvF v : 

21
( ) ( ) ( )( ) ( )( )

2ab ab ab ab

t t t t t

v v ab v ab ab v ab abF v F v F v v v F v v v                

(30) 

where 
abvF   is the second order derivative with respect to V . It 

is easy to check that 

2 | | | |

2

2 | | | |

(2 2

2 ( (( ) ( )) ))

(2 2 ( (( ) ( )) ))

ab

ab

T T

v

ab

T

v w w b b ab

T T

v v w w b b aa

O
F U UV U X

V

tr U S S S S U

F U U tr U S S S S U





   

   

 
     

 

   

      

(31) 

Putting (31) into (30) and comparing it with (29), we can see 

that, to show ( , ) ( )
ab

t

ab vG v v F v  is equivalent to prove 

2

2 | | | |( ( ( ) ) ) 1
( )

2 ab

T T

v w w b b ab t

v abt

ab

U UV tr U S S S S U V
F v

v

        
  

(32) 

To prove (32), we have 

( ) ( )T t T

ab ab aaU UV v U U  
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2

2 | | | |

2

2 | | | |

( ( ( ) ) )

( ( (( ) ( )) ))

T

v w w b b ab

t T

ab v w w b b aa

tr U S S S S U V

v tr U S S S S U





   

   

   

    
 

Thus, (32) holds and ( , ) ( )
ab

t

ab vG v v F v .                                         □ 

Proof of Theorem 1: Putting  ( , )t

abG u u  in (24) into (23) and 

putting  ( , )t

abG v v  in (29) into (23), we obtain: 

1 2 | |( 1) ( )

1 2 | |

( 2 ( ))
arg min ( , )

( 2 ( ))

T

w b abt t t

ab ab ab T T
u w b ab

XV U U S S
u G u u u

UVV UU U U S S

 

 

 



 

  
 

  

2 | |( 1) ( )

2 | |

( ( ( ) ))
arg min ( , )

( ( ( ) ))

T T

v w b abt t t

ab ab ab T T
v v w b ab

U X tr U S S U
v G v v v

U UV tr U S S U





 



 

  
 

  

Since (24) and (29) are auxiliary functions, 
abuF  and 

abvF  are 

nonincreasing under the update rules. 

APPENDIX B 

PROOF OF THEOREM 2 

Let ( )F u  denote the part of 
KLO  relevant to u . Similar to 

the proof of Theorem 1, we define the auxiliary function 

regarding u  as follows. 

1

, ,

2 | | | |

(( ) log( ) ) (( ) log( ) )

( (( ) ( )) )

T T

ij ij ij ij ij ij

i j i j

T

w w b b

F UV x UV U U I U U

tr U S S S S U



    

   

   

 

            (33) 

In order to simplify the proof of Theorem 2, we divide (33) in 

three parts 

1

,

(( ) log( ) )ij ij ij

i j

F UV x UV                               (34) 

2 1

,

(( ) log( ) )T T

ij ij ij

i j

F U U I U U                       (35) 

3 2 | | | |( (( ) ( )) )T

w w b bF tr U S S S S U                       (36) 

Let 
1 2( ) ( ),F u F u，  and 

3 ( )F u  denote the part of 
1F , 

2F  and 

3F  relevant to u , respectively. Similar to the proof of Theorem 

1, we define auxiliary functions of 
1( )F u , 

2 ( )F u , and 
3 ( )F u  by 

Lemmas 4-6. 

Lemma 4: Function  

1

,

( , ) ( ( log log ))

t t t

ik kj ik kj ik kjt

ik kj ij ik kjt t tk k
i j ik kj ik kj ik kjk k k

u v u v u v
G u u u v x u v

u v u v u v
    

  
    (37) 

is an auxiliary function of (34) regarding u : 

1

,

( ) ( log )ik kj ij ik kjk k
i j

F u u v x u v     

Proof: Obviously, 1 1( , ) ( )G u u F u , we will show that 

1 1( , ) ( )tG u u F u . We have the following inequality  

log log
ik kj

ik kj kk k
k

u v
u v 


    , 

Setting 

t

ik kj

k t

ik kjk

u v

u v
 


, we obtain 

log (log log )

t t

ik kj ik kj

ik kj ik kjt tk k
ik kj ik kjk k

u v u v
u v u v

u v u v
    

 
 

From this inequality, we obtain that 
1 1( , ) ( )tG u u F u .               □ 

Lemma 5: Function  

2

,

( , ) (

( log log ))

t

ki ikk
i j

t t t

ki ik ki ik ki ik

ij ik kit t tk
ki ik ki ik ki ikk k k

G u u u u

u u u u u u
I u u

u u u u u u
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

 


  

    (38) 

is an auxiliary function of (35) regarding u : 

2

,

( ) ( log )ki ik ij ki ikk k
i j

F u u u I u u    . 

Proof: The proof of Lemma 5 all the same as the proof of 

Lemma 4, so we omit it here.                                                  □                         

Lemma 6: Function  

3 | | | |

,

2

| | | |

,

( , ) ( (( ) ( )) )

( ( ) ) ( )

t T

w w b b ik

i k

T t

w w b b ik

i k

G u u tr U S S S S U

tr U S S S S U u u
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   

   
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


 (39) 

 is an auxiliary function of (36) regarding u : 

3 | | | |

,

( ) ( (( ) ( )) )T

w w b b ik

i k

F u tr U S S S S U       . 

Proof: Obviously, 
3 3( , ) ( )G u u F u , and 

3 3( , ) ( )tG u u F u .  □ 

From Lemma 4 to Lemma 6, we can show that the update rule 

of (31) and (32) are exactly the updates of (19). Let ( )F v  

denote the part of 
KLO  relevant to v . We define the auxiliary 

function regarding v  as follows: 

1 2( ) ( ) ( )F v F v F v  . 

Then we have Lemmas 7-8 which give the auxiliary functions of 

1( )F v  and 
2 ( )F v . 

Lemma 7: Function 

1

,
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( log log ))
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ik kjk
i j

t t t

ik kj ik kj ik kj
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ik kj ik kj ik kjk k k

G v v u v

u v u v u v
x u v

u v u v u v

 



 


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    (40) 

 is an auxiliary function of (34) regarding v : 

1

,

( ) ( log )ik kj ij ik kjk k
i j

F v u v x u v     

The proof of Lemma 7 is essentially similar to the proof of 

Lemma 4, we omit it here due to space limitation. 

Lemma 8: Function 

2 | | | |

,

2

| | | |

,

( , ) ( (( ) ( )) )
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t T

w w b b ik
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T t

w w b b ik

i k

G v v tr U S S S S U
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
 

is an auxiliary function of (36) regarding v : 

2 | | | |

,

( ) ( (( ) ( )) )T

w w b b ik

i k

F v tr U S S S S U       . 

The proof of Lemma 8 is essentially similar to the proof of 

Lemma 6, we omit it here due to space limitation. 

Proof of Theorem 2: Setting the gradient of (34-36) and (40) to 

zero:  

31 2
( , )( , ) ( , )

0
tt t

ij ij ij

G u uG u u G u u

u u u

 
  

  
 

and 
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We can obtain 

1 2 | |

1 2 | |

/ 2 / 2 ( ( ))

2 2 ( ( ))

jb ib ik kb ik pi ip w b ijb k k p

ij ij

jb ik w b ijb k

v x u v u u u U S S
u u

v u U S S

 

 

 

 

  


  

   

 

2 | |

2 | |

/ ( ( ( ) ))

( ( ( ) ))

T

pi pi pk kj v w b ijp k

ij ij T

pi v w b ijp

u x u v tr U S S U
v v

u tr U S S U





 

 

  


  

 


. 

Theorem 2 guarantees that the update rules in (21) and (22) 

converge and the final solution will be a local optimum.        □ 
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